
a tour focused on camera vendors

introduction to

 Standards

This presentation was created as basis for technical training sessions focused at use and implementation of the GenICam

standards. It may contain subjective opinions or experience of the author and does not necessarily constitute the official

standpoint of the GenICam committee.

The GenICam standard is work in progress, the content of the presentation might become out-of-date. Updated or

otherwise extended versions of the presentation might be available from the author.

The presentation is provided on an "as-is" basis. The author makes no warranties regarding the information provided and

disclaims liability for damages resulting from its use.

Copyright 2014-2020 by Jan Bečvář (Groget)
This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nd/4.0/.

GenICam is the trademark of EMVA. Camera Link, Camera Link HS, GigE Vision, and USB3 Vision are the trademarks of AIA.
CoaXPress and IIDC2 are the trademarks of JIIA. All other names are trademarks or trade names of their respective owners.

Latest version of the presentation available from https://www.groget.org/publications/genicam_introduction.pdf.

About the Presentation

https://www.groget.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://www.groget.org/publications/genicam_introduction.pdf

1. Introduction to GenICam

2. SFNC GenICam Module

3. GenApi GenICam Module

4. GenTL GenICam Module

5. GenDC GenICam Module

6. Other GenICam Modules

7. Testing & Debugging

8. Information Sources

Presentation Overview

Please stop the presentation whenever something is unclear or further

details are required

We should pause and demonstrate the topics on a real examples or with

hands-on experience wherever useful

Before We Start

Introduction to GenICam

History and goals

Started in 2004 as a fork from GigE Vision group with intention to define

flexible and technology independent way to access camera features

First release in 2006 in ± sync with GigE Vision, started with GenApi and

SFNC modules

GenTL added to standardize more than just feature control and spread

GenICam to other technologies

Being well accepted through the GigE Vision use case, GenICam is reused

for all new machine vision standards as well as independently

Brief History

Provide common framework for communication between (machine

vision) devices and applications.

Covering more and more device interface technologies, delivering similar

(thus familiar) user experience with wide variety of products.

Generic interfaces providing wide flexibility for product design, but with

enough space for specific vendor features.

Easy integration of the products in the target system.

Goals of GenICam

SFNC GenICam Module

Names and hierarchy of the (camera) features

Started before finishing the initial release of GenICam and GigE Vision

standards

• To ensure at least the essential interoperability through minimal

set of mandatory features

• To prevent unnecessary diversity in naming same things always

different way

Over years extended to 500+ page document as standardizing more

feature groups was considered useful by numerous contributors

Evolution of SFNC

Features organized in categories

• Category contains related

features, controlling common

subtopic of device functionality

• GUI only meaning

Repeated features ("arrays")

implemented using selectors

• GenICam approach to eliminate

unneeded duplicities

Features Hierarchy

Feature properties defined by SFNC include

Data type: integer, float, string, enumeration, command, boolean,

register

Visibility: beginner, expert, guru, invisible

Access mode: R/W, RO, WO (GenICam also recognizes NI/NA)

Standard values: list or range of expected feature values

Unit: expected standard unit to be used for the feature

Features Behaviour

Categories defined in SFNC 2.3

Feature Groups

• Device info

• Image format

• Scan 3D

• Analog

• LUT

• Color Transform.

• Acquisition

• Transfer

• Digital I/O

• Counter and Timer

• Encoder

• Logic Block

• Action Commands

• Software Signal

• Lighting Control

• Chunk Data

• Event

• Source

• User Set

• Sequencer

• File Access

• GenICam

• Transport Layer

• Test

Topics being discussed for future SFNC versions:

• Complex pixel format description

Feature Groups (cont.)

Initially a fixed functional model was considered for SFNC

• Did not work, too hard to standardize so that everybody is happy

• Could be advantage for generic applications but limiting for

flexible device design

• In many cases the SFNC feature description is loose, giving space

for interpretation

• Generic applications need to be careful about making too strong

assumptions about the model

Functional Model: Fixed vs. Flexible

Mandatory features

• Features shared as mandatory by most technologies, essential for
elementary device control

• Width, Height, PixelFormat, PayloadSize, AcquisitionMode,

AcquisitionStart, AcquisitionStop

3D support (refer to dedicated presentation)
• Features required for 3D interoperability are too complex to be

embedded in a usual transfer protocol (GEV/U3V)
• The missing protocol support needs to be compensated by reliable

SFNC based info exchange (incl. chunk data)

Other feature groups

• File access, action commands, source/transfer control, FW update
• LinePitch or similar features breaking stream self-description

Where Fixed Model is Important

https://www.groget.org/publications/genicam_3d.pdf

Root: top level category used to define set of published feature nodes

Device: port used to connect to the remote device port in GenApi

PayloadSize: important to allocate acquisition buffers (discuss also the

variable payload size option and GenDCFlowMappingTable)

TLParamsLocked: used to protect sensitive transport layer related

features during acquisition, discussions about its exact use still running

SourceSelector: special selector covering features from multiple

categories, used to implement multi-source devices

Special Purpose Features

Defined by SFNC as well but most of them have limited use

• Given functionality typically accessed directly through the low

level control protocol

• Danger of clash with the protocol engine

• Caching problems (if given feature is modified under the hood)

Some libraries/applications might hide even some typically public

features and wrap them within own functionality

• AcquisitionStart, AcquisitionStop

Transport Layer Control Features

Chunk features

• Purpose

• Naming: ChunkXYZ where XYZ is the base feature

• Individual chunks need to be switched on as well as the chunk

mode itself

Event features

• Purpose

• Naming for XYZ base event:

• EventXYZData is category holding all data related to the event

• EventXYZ is a feature to be used to register notification

• Recommended EventXYZTimestamp, EventXYZFrameID

• Individual events need to be switched on

Special Feature Groups

PFNC - generic convention for naming pixel formats

• Shared among technologies

• Now part of SFNC

• Provides also standard ID's for the most usual formats to provide

interoperability also at protocol level

• Easy and straightforward mechanisms to standardize new formats

• Includes usual formats used by 2D and 3D devices

• More complex formats like polarized or hyperspectral under

discussion (2019)

PFNC - Sub-module of SFNC

Each PFNC format defines following properties of a pixel:

• Number, order and type of pixel components

• Pixel data type (unsigned, signed, float)

• Number of bits used by each component

• Bit packing, grouping, clustering or alignment style

• Planar formats

Examples:

• Mono8, Mono10p, Mono8s

• RGB12, BGR565p, RGB10p32, YUV422_8_UYVY

• BayerGR10, SCF1WBWG8, BiColorRGBG10p

• Coord3D_ABC32f_Planar, Coord3D_AC8, Confidence1p

• (GigE Vision uses also few legacy non-PFNC formats)

PFNC Formats Overview

Camera interface specific options:

• Line vs. image padding conventions for non-byte-aligned pixels

• Default lsb vs. msb versions of pixel formats

Beware and distinguish between:

• Pixel format "endianness" - are the pixel data bits shifted towards

the most or least significant bit? (CXP uses msb on the wire)

• Pixel data endianness - are the multi-byte pixel data stored in

memory as LE or BE? (GEV 1.x allows to switch to BE)

Interoperability:

• Not all formats widely supported, same for above options

• If possible, prefer image padding, lsb, little endian pixels

PFNC Advanced Topics

Reference SFNC compliant XML

• Generated automatically for each SFNC version and published on

genicam.org

• Includes complete PFNC support

• Covers also GenTL SFNC

• Generated using tools available from SVN

• Includes all SFNC features with correct type, visibility, access

modes and also default info texts

• Covers categories and selectors

• Includes even hints about feature limits or expected units

• Provides outputs specific for individual GenApi schema versions

• Can be easily used to start device XML development quickly

Implementing SFNC

Reference PFNC header file

• Generated automatically for each update of the PFNC pixel format

value list and published on genicam.org

• Includes symbolic names for all official PFNC format ID's

Implementing SFNC - PFNC

Schematron files available for all SFNC releases

• Generated by the same tools as reference XML

• Available for XML's based on any GenApi schema

• Can be used to validate within editors supporting Schematron

(e.g. oXygen XML) or with other Schematron validators

• Outputs errors and optionally also warnings

• The checks include

• Correct feature type

• Standard namespace (incl. standard enumeration entries)

• Correct visibility and category sorting

• Warns about deprecated features

Validating SFNC

GenApi GenICam Module

How the features work under the hood

Core of GenICam

Some highlights

• Generic access to cameras

• Flexible (device specific) register access

• Full list of feature interfaces, flexible relationships

• Transport layer agnostic

• Based on well documented XML specification

• Production quality reference implementation

GenApi - GenICam Basic Building Block

User Experience

XML Format

Basic properties of a GenApi feature

• Name (used to access the feature programmatically)

• Namespace (standard, custom, both), possible approaches for

custom feature naming (prefix?)

• Data type (integer, float, string, ...)

• Actual meaning (abstract, for standard features defined in SFNC)

• Programming feature access helpers (access mode, limits, ...)

• GUI helpers (display name, info texts, ...)

XML Features

Integer: incl. limits, increment or even value set
(slider)

Float: possibly with hints for display such as
precision/notation

String: ASCII/UTF8 (edit box)

Boolean: true/false (checkbox)

Command: triggers action on the device (button),
completion feedback

Enumeration: selection from set of values (combo
box)

Register: blob of memory

Feature Interface Types

Typical GenApi XML file consist of

• Feature nodes (those visible to users in GUI, accessible from

Root)

• Implementation nodes (registers, computation helpers)

• Auxiliary nodes (structure, ports, etc.)

Any of the nodes can be accessed programmatically

If needed (embedded) this layering approach can be simplified

XML File Structure

Accessible from Root category

Feature nodes allow to add documentation and GUI hits

• info texts (plus DocuURL, pError)

• limits, increments (plus value set)

• unit

• representation (linear, logarithmic, pure number)

• display notation/precision (fixed, scientific)

• visibility control

Also the access mode can be further limited

• ImposedAccessMode, pIsImplemented/Available/Locked

• Helps to avoid problem with dependencies if low level nodes

would have limited access mode

Feature Nodes

Integer or float "swiss knives" and converters

• Value conversion between raw and interface units

• Complex calculations

• Access mode computation and limiting

• Register address computation (incl. selector handling)

• Register/value selection based on register availability

Additional helpers

• Replicator (pValueCopy)

• Multiplexer (pValueDefault/pValueIndexed)

Computation/Conversion Nodes

Describe the register space of the underlying medium

• Device read/write, chunk data, event data

• The medium itself described through port

Different register types

• IntReg, FloatReg, StringReg, Register, MaskedIntReg, StructReg

Important register properties

• Address (incl. pAddress, pIndex[Offset], IntSwissKnife), length

• Sign, Endianess (refer to endianess problems in GEV)

• Caching, polling time, invalidators

• Connection to port

(some properties might overlap between feature nodes and registers)

Register Nodes

Category: feature structuring for GUI

Port: connection to the register space

• Port name used to connect ("Device", GenTL ports)

• Chunk and event ports (ChunkID, EventID)

Group: only internal XML structuring helper

Auxiliary Nodes

Selector is GenApi's idea of array (or other iterable container)

• In XML applied through pSelected

• Can be used with Integer, Enumeration and Boolean

• Can be cascaded (multidimensional array)

• By convention acts only as array index, no other side effects

• In GUI typically handled similar as categories

The indexing can be performed in

• The device (selector value written to a register)

• XML (selector value used in selected register address calculation)

Examples:

• TriggerSource[TriggerSelector] - enumerated selector

• DeviceID[DeviceSelector] - integer selector

Selector Nodes

Chunk Data

Chunk Data (cont.)

Chunk data have fixed relation to the buffer (not affected by device

nodemap changes)

Preferably the chunk data do not depend on Device port

• Planned possibility to extract chunk sub-nodemap

Chunk features/registers are just like regular features/registers

• Chunk registers can implement selectors/arrays

• Chunk-depending features can use any computations

• Chunk registers can carry access mode inquiry bits

• etc.

GenDC

• Possibly multiple chunk sections in one buffer

Chunk Data (cont.)

GenApi uses chunk adapters to apply chunk data from a buffer to the

nodemap. The adapter:

1. Parses chunk structure in the buffer.

2. For each chunk checks if XML has port with matching chunk ID.

3. If found, it attaches the chunk's buffer to that port.

4. Invalidates all nodemap features depending on that port to force

them read new values from the attached buffer.

Chunk Data (cont.)

Asynchronous Events

Event data handling is in many ways similar to chunk data handling with some

specifics:
• For each transport technology it's important to know where in the

packet start by convention the addressable data

• Application should read event data within the notification callback to
avoid feature overriding by next event

• Application should process the data within the callback quickly to
avoid blocking the event handling engine

Preferably the event data do not depend on Device port

Event features/registers are just like regular features/registers
• Event registers can implement selectors/arrays

• Event-depending features can use any computations
• Event registers can carry access mode inquiry bits

• etc.

Asynchronous Events (cont.)

GenApi uses event adapters to apply event data from a "packet" to the

nodemap. The adapter:

1. Parses event structure in the packet (typically just single event).

2. Finds event ID, checks if XML has port with matching event ID.

3. If found, it attaches the event data from the packet to that port.

4. Invalidates all nodemap features depending on that port to force

them read new values from the attached buffer (and deliver

notifications to the application).

Asynchronous Events (cont.)

GenApi reference implementation allows to register for callbacks

notifying about changes of individual features:

• When new value is written to the node or a node it depends on

• Upon change of a <pInvalidator> node

• As a result of polling thread activity for polling nodes (registers,

commands, self-clearing enum entries)

• When a new buffer is attached (for chunk features)

• When a new event is delivered (for event features)

• For features depending on command also when the command

completes

Beware of cycle dependencies (AOI...)

Dependencies & Notifications

Current camera status can be persistent on the device
• User set features
• Device knows all dependencies and required persistence order,

can even survive FW-update
• The stored status is bound to the device, but cannot be re-applied

to another device

... or by means of software with help of GenApi persistence

• Streamable features (optionally including contents of user sets
and sequencer sets)

• Was subject to discussions and fixing, might be hard to
implement right for devices (temporarily NA nodes etc.), but
improving

• Can be applied to set of same devices
• Maybe publish single hidden "streamable" register

Feature Persistence

Register caching modes

• WriteThrough, WriteAround, NoCache

• Invalidation, polling

• "ValueCache" - register space caching beware of overlapping

registers that would share the value cache

Autogain-like features

• Self-clearing enum entries, pBlockPolling

• Implementation relies on polling, best refer to

EnumerationTestSuite::TestAutoGain()

• Many SW libs might ignore polling anyway

More on Caching

GenApi assumes the data are read/written to/from camera always in the

native byte order

• Conversion handled within GenApi based on <Endianess>

• Not the case with GEV's READREG/WRITEREG confusion

• "Endianess of GigE Vision Cameras" appendix to GenICam

standard

More on Endianness

When implementing a camera family, the developer can

• Use separate XML specific for each device

• Use common XML and parameterize it with help of dedicated

camera registers

With such design the camera can report

• Different values and limits of individual features

• Different access mode (incl. NI) of selected features using inquiry

bits

• Applies also for chunk/event data

Camera Family Support

The XML syntax is defined by the standard and enforced by the schema

• Additional verifications performed by the reference

implementation (runtime only)

• Some checks are impossible or missing in the schema

• Extended checks can be performed by custom made Schematron

rules during development

• Multiple schema versions (so far 1.0 and 1.1)

XML Syntax

Creating XML using a generator

• Requires investment in the generator development

• Will probably limit the possibly used XML vocabulary

• Might help to limit errors

• Might help to output different XML flavors (optimization...)

• Might help to create XML for multiple schema versions

Creating XML manually

• Allows to start quickly

• Does not impose any limitations on the XML design

• Part of the advantages of the generator approach can be achieved

with help of XSLT processing

Creating GenICam XML

Discuss options for the manual XML creation

• oXygen XML editor

• Extended Schematron checks, applied as-you-type in oXygen or

"offline" using a validator tool

• SFNC compatibility Schematron checks

• Possible XSLT adaptions of the manually created XML (strip off

unneeded stuff, versioning, post processing)

Manual XML Creation

The XML needs to be versioned with each new release

• XML version, GUID's

• File name

• Manifest table

• Should be performed automatically to avoid mistakes

• Failing to update version info might cause that some SW libraries

will not use the updated XML after FW update

Deploying GenICam XML

GenApi is used to

• Control GenICam compliant devices (original use case)

• Reused to control individual GenTL modules (discussed later)

• Some vendors reuse it to control even other entities within their

software package to provide similar user experience everywhere

Reuse of the GenApi Idea

The committee provides reference implementation of GenApi

• Not official part of the standard but almost universally used

• Simplifies device testing

• Details in SVN

GenApi Reference Implementation

Not essential for camera development as long as suitable regression tests

can be established currently not covered by this presentation

Refer to GenApi test suite in SVN

Programming GenApi

GenTL GenICam Module

Discover, configure, acquire

GenTL allows extensive software-device interoperability, fully wrapping

specifics of individual standard or custom transport technologies

• Device enumeration and information

• Device control (builds on GenApi)

• Streaming (buffering and acquisition engine interface), including

chunk data support

• Asynchronous events delivery

• Allows to build generic interfaces fully agnostic to the technology

running under the hood

GenTL - Bridging Transport Technologies

Extensive and proven GenTL support from major library vendors

• MVTec Software, STEMMER IMAGING, MathWorks, Matrox

Implemented by ever growing number of device vendors

• Common interface for all product families

• Many use it as standard internal layer (under proprietary SDK)

• Essential for smart cameras and special cameras requiring

additional software-side handling (3D)

Mandatory for CoaXPress (not yet CameraLink-HS)

• Could be turn point for some still resisting key players

GenTL User Base

With on-the-wire standardized technologies direct or GenTL based

connection is possible

• Some vendors prefer more direct grip of the device (no 3rd party

driver in the system)

• GenTL allows device vendor extensions and optimizations

• GenTL is much easier to fully implement (only big SW vendors can

afford to implement and maintain all the direct interfaces)

• GenTL is a must outside GEV/U3V to ensure interoperability with

major library products

• Direct on-the-wire interface is useful anyway, allows to simplify

the system where on-the-wire implementation is available

GenTL vs. On-the-wire

GenTL standard defines interaction between

• GenTL Producer - software knowing all aspects of the transport

technology used by given device (or device class) and implements that

technology by means of defined GenTL interface

• GenTL Consumer - generic software aiming to use devices accessible

through GenTL interface without specific knowledge about their

transport technology

GenTL Producer is a shared library (dll/so/...)

• Filename has to use extension .cti

• Its installation directory must be appended to environment variable

GENICAM_GENTL{32/64}_PATH

Software Architecture

Additional important notes:

• Producers are expected to be always dynamically loaded

(LoadLibrary&GetProcAddress/dlopen&dlsym), exported functions

must be undecorated

• On x86 stdcall is used regardless of the operating system

• Beware that producers implementing older GenTL version might be

missing some function exports and other functionality

• GenTL Producer is responsible for thread and inter process safety

Software Architecture (cont.)

Properties of the GenTL programming interface:

• Designed as ANSI C interface

• OS and platform independent

• All interaction initiated from GenTL Consumer, no callbacks, rather

polling

• The C interface can only query information about individual modules,

their control is performed always by means of GenApi nodemap

The reference header file implementing the specification is provided by

the committee for convenience

Programming Interface

GenTL Modules - Ownership Hierarchy

GenTL Modules - Programming Hierarchy

System - represents the entire GenTL Producer and its global properties

Interface - HW/SW entity used to discover and communicate with devices

(it can represent e.g. a network card or a USB bus)

Local device - GenTL Producer's proxy to the actual "remote" device and

is used to describe and establish communication with the real device

Data stream - stream of the (typically image) data acquired from the

device, can represent a real data stream of the device or data stream

generated by the GenTL Producer

Buffer - encapsulates the actual memory buffer used to acquire image or

other data

GenTL Modules

Port - provides register access (read/write), allows to establish GenApi

based access to given entity (via "manifest table")

Event - allows polling for all kinds of asynchronous events

Event source - registers/unregisters generation of individual event types

by given module

Remote device - represents the actual physical device, in particular its

port interface

Library - initialization/cleanup of the GenTL producer, basic information

Logical Module Interfaces

Common principles

• Modules identified through unique and persistent ID's

• Instances referred to by handles

• Handles stay valid until closed (directly or recursively from parent)

• Option to direct-open using the known ID

• Each instance opened just once (no reference counting)

• Eventual inter-process issues are responsibility of the producer

Module Enumeration

Always a single system module

Interfaces & devices

• Dynamic consumer-controlled enumeration (semi hotplug)

• List stays intact until next update request

• Dual view & list control (C interface, nodemap) - beware of sync

and nodemap caching problems

• Actually plugged devices, enumerated devices and devices with

valid handle might be three different sets

Data streams

• Currently lifetime fixed list of streams expected

• Dynamic list control considered for future

Module Enumeration (cont.)

Buffers

• (Allocated and) announced by the consumer

• Same buffer can be announced to multiple streams (if the

producer supports it)

• Not while streaming (optionally supported since GenTL 1.5)

• Composite buffer option (since GenTL 1.6)

Events

• Registered/unregistered based on the event type rather than ID

Remote device

• Lifetime equals Open-Close period of the local device

• Handle can be obtained ("opened") but not explicitly closed

Module Enumeration (cont.)

Information about individual entities published by GenTL Producer is

queried using common info-command infrastructure

• Always the same mechanism

• Set of standard data types (integer types, string, string list, buffer)

• For each info command the data type is specified

• Producer can publish custom info-commands, Consumer can use

them only if knowing what they mean

• GC_ERR_NOT_IMPLEMENTED, GC_ERR_NOT_AVAILABLE error

codes

• Since GenTL 1.5 selected commands are marked as mandatory

Module Information

GenTL modules are controlled based on GenApi analogically as devices

• XML file(s), manifest table (URL retrieval, typically local)

• Port read/write support, virtual register map

• Optional for buffer module

• GenTL SFNC

Grabber based GenTL Producers

• Problem with sync between the grabber (local device) and the

actual remote device - no reliable way to know actual status of

the remote device

• Provisional workaround in CXP spec

• Full solution might need to be proposed and standardized

Module Control

Asynchronous information delivered to consumer through events

• Polled - no callbacks, all operations consumer-triggered

• Obtain data, query additional info (ID/value)

• Cleanup (event kill): 1:1 kill-abort mapping, recharge after re-

registration

• Different modules support different events

Event types

• Error (universal)

• New buffer (streaming)

• Remote device & module events (nodemap-mappable)

• Feature invalidate & change (limited use, SFNC-bound)

Module Signaling

1. Allocate and announce acquisition buffers

• consumer/producer allocated

• payload size (device/modified), variable payload size, flow table

2. Start acquisition

• on producer (possible overhead) and device

• TLParamsLocked (still not quite standardized, hopefully soon)

• register new buffer event if not already registered

3. Acquisition loop (next slides)

4. Stop acquisition

• on device (and producer)

• (TLParamsLocked)

5. Cleanup (if finished)

• revoke buffers, memory released by entity that allocated it

• announce/revoke only when acquisition is not active

Acquisition Control

Acquisition Loop

Additional notes about acquisition loop:

• Buffer state also affected by data-stream and new-buffer-event

flush operations

• Presence of new data and their validity can be (especially after a

flush) queried through corresponding buffer infos

• Internal status of the buffer is undefined while owned by the

producer

Insufficient acquisition buffer:

• Setup time: refuse to start acquisition

• Runtime: fire error event (and optionally deliver part of the data)

Acquisition Loop (cont.)

When processing a new buffer, the order of querying its parameters is

1. DSGetBufferInfo (would cover also producer modifications)

2. Chunk data (is clearly bound to the buffer)

3. (Producer nodemaps but not yet well standardized)

4. Device nodemap (might not be in sync with actual buffers)

Important info's include:

• Basic buffer info (address, size, eventually segments)

• Payload type, new data flag, data completeness

• Image properties (pixel format, AOI, not in GenDC case)

In some cases (3D) the set of essential infos is so wide that it's not

practical to standardize them through buffer info chunk data.

Acquired Buffer Properties

Option to query multiple properties through single call

• DSGetBufferInfoStacked (since GenTL 1.6)

• Reduces per-buffer overhead associated with numerous

consumer-producer calls

• Separate per-info error handling

• Available also for multi-part buffers (see later)

Acquired Buffer Properties (cont.)

Single buffer can optionally contain multiple sets of data belonging

together ("same timestamp") - available since GenTL 1.5

Example use cases:

• Planar pixel formats

• Multiple AOI's

• 3D data exchange (see dedicated presentation)

• Multi-source devices

• Non-rectangular images (data + mask)

Implementation:

• Dedicated multi-part payload type

• Functions to report number of buffer parts and their properties

Multi-part Buffers

https://www.groget.org/publications/genicam_3d.pdf

Multi-part Buffers (cont.)

Option to acquire data in structured manner - available since GenTL 1.6

• Multiple separate segments instead of contiguous buffer

• Separate processing chains, GPU (?), …

• DSAnnounceCompositeBuffer to announce composite buffer

• Revoking and acquisition flow same as with regular buffers

• Mapping data to segments use case specific (currently explicitly

defined for GenDC case)

Usage notes

• Consumer must know the intended structure (e.g. flows…)

• Care needed when querying data properties incl. chunks

• Might be wise to prefer contiguous buffers by default (also for

backward compatibility)

Composite Buffers

Independent “channels” within data stream - available since GenTL 1.6

• First introduced in GenDC, in GenTL generalized for any use case

• Allows to minimize latency/buffering (each flow data transferred

as they become available)

• Allows to transfer data to discrete memory locations (when used

with composite buffers)

• Depends on flow related capabilities of given TL

Usage notes

• Composite buffers – flows acquired to matching segments

• Contiguous buffers – flow structure linearized in the buffer by

GenTL Producer (transparent for GenTL Consumer)

• Flow mapping table vs. PayloadSize (configuration dependent)

Data Stream Flows

Data Stream Flows (cont.)

The buffer can be delivered as standard GenDC container - available since

GenTL 1.6

• Principles and structure very similar to multi-part

• Starts with standard header

• Payload details (incl. chunk data) queried through the GenDC

header instead of GenTL calls

• Refer to section about GenDC standard module

GenDC in different buffer types

• Contiguous – linear container, component/part data located

using linear DataOffset

• Composite – per-flow structured container, component/part

data located using FlowOffset

GenDC Containers

When GenTL Producer modifies payload, it's even more important to

report all the (possibly modified) buffer properties:

• Payload type

• Payload size

• Pixel format

• AOI (W/H, offsets, paddings)

• (repeat problem of producer not knowing the device config)

GenTL Consumer should always prefer buffer infos to device nodemap

Important properties not included in buffer info's must be reported

through chunk data or GenTL SFNC

• 3D is an example use case relying on additional information

transferred through the chunk data

Payload Modification

Alternative ways how to order delivery of acquired buffers and specify which

(if any) buffers are discarded by the acquisition engine

Oldest first (default, mandatory): FIFO delivery, no buffers discarded from the

output queue, incoming data dropped on overflow

Oldest first overwrite: FIFO delivery, in case of overflow the oldest buffer in
the output queue is reused

Newest only: Deliver only the newest buffer, reuse older buffers immediately

for new acquisitions - this mode was added in GenTL SFNC 1.1

Other modes are yet to be standardized

• Deliver only buffer arrived after the request (no output queue)?
• Other?

Buffer Handling Modes

Buffer Handling Mode Oldest First

Buffer Handling Mode Oldest First Overwrite

Buffer Handling Mode Newest Only

GenTL supports devices without any streaming support

• Allows to include auxiliary devices such as strobes etc. within the

GenTL framework

• Such devices provide zero data streams and any streaming related

functionality is reported as not-implemented

• Main goal is to allow GenApi control of the device

• The device still can support asynchronous events

Non-streamable Devices

The GenTL Producer can use one of the established chunk formats

(GEV/U3V) or invent custom way to transfer chunk data.

If the format is known (DEVICE_INFO_TLTYPE/DeviceChunkDataFormat),

the acquired buffer can be parsed with corresponding native adapter.

For GenDC payloads, the chunk data should be parsed based on GenDC

rules (without help of GenTL Producer).

For unknown format, the buffer must be parsed by producer itself

(DSGetBufferChunkData) and applied through the generic adapter.

Extra care with composite buffers.

Chunk Data

The GenTL Producer can use one of the established event formats

(GEV/U3V) or invent custom way to transfer chunk data.

To reuse an established format, the producer might need to create fake

EVENT_CMD header for given technology as well.

If the format is known (DEVICE_INFO_TLTYPE/DeviceEventDataFormat),

the acquired buffer can be parsed with corresponding native adapter. The

entire event (including all headers) must be passed through

EventGetData.

For unknown format, the port addressable part of the event must be

returned through EventGetDataInfo(EVENT_DATA_VALUE) and applied

through the generic adapter.

Event Data

Error codes for most typical failures standardized since GenTL 1.4

• Still new and thus not reliable

• Custom error codes used where standard ones do not suffice

Use of selected important error codes

• GC_ERR_SUCCESS

• GC_ERR_NOT_IMPLEMENTED/_NOT_AVAILABLE (versioning)

• GC_ERR_RESOURCE_IN_USE (module enumeration)

• GC_ERR_ABORT (event kill)

Last error handling

• Thread local

• Not affected by any successful operations following the error

Error Handling

GenTL Validator

• The official version available from SVN

• Validating and developer modes

• Very useful for GenTL Producer testing

• Can be further extended for in-house unit tests

• Tests just some aspects of GenTL interface, extensions desirable

GenTL certification

• Optional at plug-fests, to be mandatory since 1.6 (?)

• Self-certification, producer-consumer cross testing

• Similar approach as GigE Vision, USB3 Vision, CoaXPress

• GenICam Transport Layer logo

GenTL Validation

Selected important topics waiting for better standardization:

• Support for grabber based technologies (in particular how the

grabber knows the current configuration of the remote device)

• Identification and synchronization of streams belonging together,

matching GenTL streams and physical device streams (SFNC

control) - some use cases covered by multi-part and GenDC

• Standardization of module specific error events (GenTL SFNC)

• GenTL Producer capability/configuration handling similar to GEV

Future Standardization Topics

Still young module, recently revived

• Initial version built mostly around GenTL module infos

• New functionality starting to be added

Should reuse "device" SFNC feature names wherever possible

• Add GenTL specific features

• Perhaps define which feature might apply for which module

• Waterfall vs. concrete module approach

Important for GenTL producers modifying the payload (grabbers, smart

producers, 3D)

• Might require further standardization

GenTL SFNC Status

Framework for implementation of GenTL Producers

• Official GenICam module based on code donated to the

community by MVTec

• Quick start, less errors, focus only on TL specifics

• GenTL Core – static library wrapping most of common GenTL

functionality, providing hooks for TL implementation

• Viky – toy GenTL Producer based on GenTL Core to demonstrate

the framework usage and to allow direct experiments

• Retrieve from website or svn

More details in dedicated presentation (delivered together with GPF)

• Directory “doc” within GPF

GenTL Producer Framework

GenDC GenICam Module

Generic data container

GenICam module defining standard container to store/carry versatile

image and other stream data

• Evolved from multi-part, almost identical structure

• Contains standard container header with same format across TL’s

and allowing to store the container in a file

Current status

• Version 1.0 released in December 2018

• Some aspects still (2019) under discussion, to be clarified in next

version

• To be adopted by GenTL (1.6), GEV (2.2) and other standards

GenDC Purpose and History

Typical GenTL Producer does not need to care about contents of the

GenTL payload

• GenDC is orthogonal, GenTL Producer only transports the

container from remote device to GenTL Consumer

• GenTL Consumer is responsible to parse the container

Exceptions

• If GenTL Producer modifies the GenDC payload or transforms

non-GenDC payload to GenDC

• If the remote device is virtualized within GenTL Producer

• If forced by GenDC related requirements of the underlying

transport layer technology

GenDC in GenTL Context

Other GenICam Modules

Beyond GenApi, GenTL and SFNC

GenCP

• Communication protocol for new and future standards

• Designed to be similar to GigE Vision's GVCP

• Used in USB3 Vision, CameraLink-HS, sometimes CameraLink

• Covers control and message channel

CLProtocol

• Bridge between GenICam and Camera Link

• Allows to discover and configure CL cameras, still using vendor

specific communication protocols and the clserial.dll mechanism

• Could be eventually replaced by GenCP?

Modules not Covered in Detail

Testing & Debugging

What if something goes wrong?

GenTL Validator

• Possibly extended with custom checks

Own test program

• Could be trivial consumer with possible ad-hoc changes

GenTL proxy

• But prefer good and extensive own logging

XML debugging

• Show status of internal features (modify XML)

• GenApi logging

(GENICAM_LOG_CONFIG_V2_4=PathTo/Logging.propeties)

GenICam Testing & Debugging Hints

Information in HDevelop's Output Console

Environment variables

• HALCON_GENTL_LOGGING, HALCON_LOG_LEVEL,
HALCON_OWN_GENICAM_LOG_CONFIG

• HALCON_GENTL_WRITE_XMLFILE,
HALCON_GENTL_WRITE_RAW_XMLFILE (GENTL will be replaced
with GENICAM)

Command 'do_write_configuraiton'
• Stores all involved XML's in an ini file
• Allows to re-open next time, loading (possibly modified) XML's

specified in the ini file

Get familiar with HALCON's GenTL interface documentation

HALCON Debugging Support

Information Sources

How to stay in sync

Official website www.genicam.org

• Useful in particular to download all official releases and minutes

from technical meetings

Mailing list genicam@list.stemmer-imaging.com

• Official place to ask for help

• Many of technical discussions (even historical - archive)

SVN-Trac-Forum-Wiki genicam.mvtec.com/trac/genicam

• Documents, source code, work on future versions

• Issue & homework tracking

• Technical discussions, various info (wiki)

FTP GenICam-rw@ftp.baslerweb.com

• Mainly presentations from technical meetings and releases

• Access details in Trac Wiki (above)

Groget (www.groget.org)

Where to Get Information

http://www.genicam.org/
https://www.groget.org/

Most useful data available from GenICam SVN repository:

• GenTL Producer Framework and its Viky example producer

• GenApi reference implementation and its test suite

• GenTL validator

• SFNC reference XML and Schematron validation

Beware of possibly loosely maintained stuff:

• In particular GenTL producer/consumer sample code

• Possible incomplete/obsolete howto's in the wiki

SVN: What to Look For?

GenICam group membership

• Is free (for companies/organizations)

• Provides access to the group's resources and knowledge base

How to join:

• On www.genicam.org navigate to page named "GenICam Group

Members" (the actual link might change)

• The page contains section "How to become an associated

member?" with corresponding instructions

GenICam Group Membership

http://www.genicam.org/

?
What else?
Further discussion...

Time to start with actual implementation?

What’s Your Message?

 Standards

