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GenICam 3D - Background 

Why & how 



Growing number of 3D implementation but no standard for 3D data 

exchange 

 

Example of the problems faced 

• No existing rules for exchange of 3D data between devices and 

generic applications 

• (Ab)use of color pixel formats, vendor specific mapping to real-

world units and coordinate systems 

• Vendor specific add-on data transferred per-pixel 

• Generic applications cannot process the 3D data effectively (in 

the acquisition engine) 

• Extra burden on side of both device and application vendors to 

reach interoperability 

 

Motivation for the Standard Extensions 



Working group gathered to discuss standardization 

• Major vendors with 3D interest, started Q1 2013 

• Initially around GenTL and GigE Vision communities 

• Identified set of requirements to satisfy versatile needs of 

different vendors 

• Most of the technical discussions captured in discussion forum 

genicam.mvtec.com/trac/genicam/discussion/topic/55 

• Progress through series of conference calls and committee 

meetings 

Standardization Effort Organization 



The working group identified several orthogonal areas requiring 

extensions to introduce 3D awareness. 

 

The orthogonality allowed to progress with individual topics 

independently in subgroups with different pace 

• Introduce the notion of a 3D "pixel"  PFNC extensions 

• Define how the raw pixel values map to real-world coordinates  

SFNC 3D model 

• Allow transmitting the 3D together with other data such as 

luminance, confidence, scatter  GenTL multi-part buffer model 

• Transmit the multi-part data effectively considering specifics of 

individual transfer technologies  GigE Vision protocol extensions 

(similar for other technologies) 

 

Standardization Areas 



GenDC 

• Standardized “Generic Data Container” 

• Uniform data description on any TL and/or in a file 

• Data structure almost identical with multi-part (except the 

standard header) 

• Therefore not implying changes in other parts of the picture, in 

particular the SFNC 3D model 

• Currently (2019) adoption in TL standards in progress 

• Covered in the presentation only where principles between multi-

part and GenDC usage differ 

 

Following Standardization Steps 



              

            

        

3D Pixel - PFNC 

The notion of a 3D pixel 



The main goals of the PFNC 3D extension 

• Introduce new pixel formats to clearly distinguish 2D, 3D and 

other types of data 

• Avoid abuse of color formats for 3D, color and 3D devices have 

different needs 

• Keep the 3D formats abstract, agnostic of properties such as 

coordinate systems or units  such properties are attached to the 

data rather through a well-defined SFNC model 

• Support linescan vs. areascan, 3D (point cloud) vs. 2.5D (depth 

map) 

• Build on the existing PFNC infrastructure rather than reinvent the 

wheel 

• Stay transport layer agnostic 

 

PFNC Extension Goals 



Letters A, B, C used to express abstract coordinates 

• Independent of the coordinate system (Cartesian, spherical or 

cylindrical) 

• Letter C always expresses the depth (Z, Rho) 

• Presence of letters in the pixel name corresponds with presence 

of (1-3) coordinates in the pixel 

• All other pixel properties such as data type, number of bits, 

padding, etc. reuse existing PFNC infrastructure 

 

Examples: 

• Depth only: Coord3D_C8, Coord3D_C16 

• Full 3D: Coord3D_ABC16_Planar, Coord3D_ABC8 

 

Abstract 3D Pixel Formats 



Some 3D devices need to deliver 3D data in floating point format 

• Extended PFNC with support for floating point data type (based 

on ubiquitous IEC 60559:1989, also known as IEEE 754) 

• 32-bit and 64-bit floating point formats (C's float/double) 

• Highly recommended to avoid specific floating point values, in 

particular NaN's to avoid performance penalties 

• Floating point pixel formats contain the "f" indicator after the bit-

depth number 

 

Examples: 

• Coord3D_ABC32f_Planar, Coord3D_C32f 

 

Floating Point Pixels 



Specific 3D devices might output only 2 coordinates per pixel 

• Linescan based 3D devices would output the X-Z coordinates, 

while Y is implicit based on camera-object movement between 

scans (analogical for other coordinate systems) 

• The Y-value could be computed from scan number or encoder 

value (beyond scope of PFNC) 

 

Examples: 

• Coord3D_AC16_Planar, Coord3D_AC32f 

 

 

2-component Pixels 



Typically used together with other (2D or 3D) image plane 

• To express level of validity of corresponding pixels in the "master" 

image plane 

• To cope with laser occlusion, uncertain time-of-flight depth 

computation etc. 

• 1-bit confidence to mark pixels valid or invalid 

• Multi-bit int confidence to express level [0, max_value] 

• Float confidence to express level, typically [0.0, 1.0] 

• Primary use case is 3D, but can be reused eg. for masking non-

rectangular images 

 

Examples: 

• Confidence1, Confidence1p, Confidence8, Confidence32f 

Confidence Pixel Format 



              

            

        

3D Coordinates - SFNC 

Mapping the pixel values to real-world coordinates 



The main goals of the SFNC 3D model 

• Make the 3D data stream self-describing same as usual in 2D (the 

protocol itself does not carry sufficient info) 

• Stay transport layer agnostic 

• Stay independent of the multi-part/GenDC transfers, for devices 

transferring 3D without additional data multi-part/GenDC is not 

needed 

 

SFNC Extension Goals 



Fixed, unambiguous model very important for interoperability 

• Defined "Scan 3D Control" SFNC chapter 

• Observe also "Chunk Data Control", "Encoder Control", and 

"Image Format Control" 

• Guidelines for interpretation of the model given later in this 

presentation 

 

Devices should aim to implement the model as completely as possible to 

avoid ambiguity 

 

Chunk data with full description of properties of the 3D data in the buffer 

should be always attached to the buffer to allow correct interpretation of 

the data 

 

Fixed SFNC Model for 3D 



Enable/disable individual image components and their configuration 

• ComponentSelector/Enable (individual components typically 

transferred as multi-part 

• AOI and PixelFormat control of individual components 

• Selecting a "planar" pixel format will result in multiple parts, eg. 

PixelFormat=Coord3D_ABC8_Planar gives 3 consecutive parts 

carrying Coord3D_A8, Coord3D_B8 and Coord3D_C8 data (in 

GenDC that would be a component containing 3 parts) 

 

Note that for complex devices the component handling might be 

optionally wrapped within RegionSelector and/or SourceSelector 

 

Image Component Configuration 



Compromise between effective data transmission (bandwidth) and 

desired coordinate data range 

• It is frequently desirable to transfer the data in integer format for 

performance reasons 

• Conversion to (typically float) real-world coordinates using per-

coordinate scale factor and offset 

 

Raw Pixels To World Coordinates 



Devices with Cartesian, spherical or cylindrical native coordinates 

supported 

 

Anchored vs. reference coordinated system 

• Reference system marker label on the device 

 

Devices with coordinate system transformation support 

 

Coordinate Systems 



Versatile options of 3D data output to support wide range of devices 

• 3D vs 2.5D 

• Grid vs. unorganized point cloud 

• Calibrated, rectified or uncalibrated 

• Linescan (Y from encoder or scan number) 

• Disparity 

 

SFNC provides clear guidelines how to process data in each of the output 

modes 

 

3D Data Output 



Features to query or control which coordinate value (if any) should be 

treated as invalid pixel mark 

 

Features to assist visualization - definition of bounding box for the data 

 

Other Topics 



For additional information refer to 

• Chapter "3D Model Reconstruction" later in this presentation 

• Detailed descriptions and numerous examples in the SFNC 

specification 

Further Details 



              

            

        

3D auxiliary data - GenTL 

Generic model to transfer diverse data together 



The main goals of the GenTL multi-part buffer support 

• Allow to deliver various data "carrying the same timestamp" in a 

single buffer (single event), avoiding problems with identification 

which data belong together 

• Generic description of the target buffer implementable by all 

underlying transport layers 

• Simple model not imposing excessive restrictions for the TL's 

• The individual parts might use different data types 

• Allow using custom data types as well 

• Cover also other related use cases 

 

GenTL Extension Goals 



GenDC (Generic Data Container) aims to solve the same problems as 

multi-part 

• Instead of through per-part information queries it standardizes 

self-describing container header (TL independent) 

• In future expected to be widely used 

• Currently (2019) not yet adopted by TL standards and only beta-

version implementations available 

• Rest of the presentation currently focuses on multi-part, but most 

of it applies equally to GenDC 

 

GenDC Standard 



Main use cases of the multi-part buffer: 

• 3D devices: 3D, luminance, confidence, scatter, even custom data, 

all together 

• Planar formats: unambiguous description of order and location of 

the planes within the buffer 

• Multiple AOI's: all sensor AOI's from a single exposure together 

• Multi-source devices: allow transferring data from multi-source 

(multi-sensor) device together if the sources work in sync (same 

trigger) 

• Non-rectangular images: allow transferring the image data 

together with pixel mask (confidence) 

• Multispectral? More? 

 

Multi-part Buffer Use Cases 



The GenTL buffer can newly optionally consist of multiple distinct parts 

• Added new API's to query structure of such buffer and properties 

of individual parts 

• Part info querying analogical to traditional buffer info queries 

• If needed, additional information about the payload can be 

delivered through chunk data 

• Order of the parts not significant (except as for planes of the 

same planar-format entity) 

• No need for contiguous structure (padding allowed, helps for 

variable-size linescan use cases) 

 

GenDC note: in GenDC the data and its properties is not queried through 

GenTL calls but by parsing the GenDC container header 

 

Multi-part Buffer Principles 



Multi-part Buffer Principles (cont.) 



Is given buffer carrying multipart data? 

• DSGetBufferInfo(BUFFER_INFO_PAYLOADTYPE) == 

PAYLOAD_TYPE_MULTI_PART 

 

How many parts are in the buffer? 

• DSGetNumBufferParts() 

• Can be zero (chunks only) 

• Beware - unlike in GEV, chunk section is not necessarily reported 

as a separate part 

 

What is address, size, data type and other properties of the parts? 

• DSGetBufferPartInfo() 

Multi-part Buffer API Extensions 



Structure of the parts in the buffer is described by 

• Part's base address and data size (actually transferred size) 

• Data type (3D image, 2D image, ..., custom) 

• Data format (usually PFNC based) 

• AOI 

• Source ID 

• Expected future extensions: region ID, data purpose ID 

 

For multi-part buffer, part-specific properties must be always queried 

using DSGetBufferPartInfo() rather than global DSGetBufferInfo() 

Buffer Part Description 



Chunk data can be appended to buffer with multi-part payload same way 

as to any other payload type 

• For 3D use cases the chunk data is practically inevitable (refer to 

SFNC section) 

• Check chunk data presence using  

DSGetBufferInfo(BUFFER_INFO_CONTAINS_CHUNKDATA) 

 

GenDC note: GenDC defines its own rules for chunk data handling, the 

chunk data should be searched and parsed based on the container 

header, without help of GenTL. 

Chunk Data 



Query which source the data belong to 

• Multi-part: BUFFER_PART_INFO_SOURCE_ID 

• GenDC: ComponentHeader::SourceId 

• Same ID means same source (such as sensor) 

• Relate to SFNC using SourceSelector/SourceIDValue and their 

chunk counterparts 

 

Beware: parts carrying same source ID might not be always pixel-

mappable, in particular if the device mixes different types of regions (see 

SFNC RegionSelector) 

 

Possible reuse by complex devices providing different kinds of data (such 

as different 3D config, two laser lines, ...) from different parts of the same 

physical sensor 

 

Part-Source Mapping 



Analogical to part-source mapping 

• Multi-part: BUFFER_PART_INFO_REGION_ID (since v. 1.6) 

• GenDC: ComponentHeader::RegionId 

• Same ID means same region (and same offset/size parameters) 

• Relate to SFNC using RegionSelector/RegionIDValue and their 

chunk counterparts 

• Beware: since SFNC 2.3 region does not mean region of interest, 

but can have wider meaning (raw sensor output vs. result of 

processing) 

 

 

Part-Region Mapping 



Means to further identify actual purpose of the data and distinguish 

different parts based on the same basic data_type (such as 2D image) 

• Multi-part: BUFFER_PART_INFO_DATA_PURPOSE_ID (since v. 1.6) 

• GenDC: ComponentHeader::TypeId 

• Values of the ID's are device specific, actual meaning is attached 

to them from the nodemap - allows easy custom extensions 

• Relate to SFNC using ComponentSelector/ComponentIDValue and 

their chunk counterparts 

• In future the SFNC model can be extended/altered for specific use 

cases? 

• Note: since version 2.5 SFNC lists fixed ID’s for certain component 

types 

 

 

Data Purpose Querying 



Pixels in a 3D point cloud output might not be organized in a rectangular 

matrix, just unorganized set of pixels 

 

Multi-part: 

• Report width as 1, height as total number of pixels 

• Allows to reuse height to report variable size image as known 

from line scan applications 

• Same convention should apply to all transfer technologies 

 

GenDC: 

• Use PartHeader::HeaderType == GDC_1D 

• Considers only one dimension of the data (no x/y) 

 

 

Non-line Oriented Data 



Currently no mechanism defined to negotiate awareness of the multi-part 

buffer support between producers and consumers, allowing smart 

fallback 

• The general introduction of "capabilities" into the GenTL standard 

deferred to a next version (further discussion needed) 

 

Future Topics 



              

            

        

3D on the wire 

Multi-part implementation in the transfer technologies 



The main goals of the GenTL multi-part buffer proposal 

• 100% compatibility with GenTL multi-part buffer as target output 

• Stay symmetric with existing GigE Vision conventions wherever 

possible 

• Allow effective linescan-like devices sending the data as available 

with low latency and low buffering 

• Still allow to send the data in simple top-down manner by simple 

devices 

• Allow scalability to higher number of parts in the payload 

• Re-use the mechanism to improve other use cases (planar 

formats, multi-AOI) 

• Intended to transfer data carrying common timestamp (while in 

linescan case it's the common "virtual frame" timestamp) 

 

GigE Vision Multi-part - Goals 



Designed as extension of the multi-zone payload type from GEV 2.0 

• Re-use of principles already existing in the specification 

• All the data belonging together over single stream, in single block 

• Allows to send data for individual parts in parallel as they are 

acquired  low latency and low buffering for linescan devices 

• But sending the data "top-down" as they will appear in the final 

buffer is fully valid option 

• Allows early drop of packets from parts of no interest by receivers 

 

GigE Vision Multi-part - Principles 



Leader/trailer carry essential info about the data 

• Leader defines structure of the parts in the payload (similar like 

GenTL multi-part buffer) 

• It is up to the receiver if it will store the data to a common GenTL-

like buffer or process them separately 

• Essential info about all parts (similar as GenTL part information, 

extended info available through SFNC) 

• Trailer carries info about actual data size in each part (allows to 

cut parts short for variable size linescan use cases) 

 

GigE Vision Multi-part - Leader/Trailer 



Main rules for streaming the payload packets 

• Packets from the same part (and zone) always sent in order 

• Packets from different parts can (but do not have to) be sent out 

of order (arbitrary interleaving) 

• Each packet "knows" its offset in the payload 

• Packet ID always sequential to allow effective resend 

• All packets full-sized except for last packet in a part/zone which 

can be smaller 

• Single packet cannot carry data from multiple parts 

 

GigE Vision Multi-part - Payload 



Example of possible packet transmission (without zones) 

 

GigE Vision Multi-part - Payload (cont.) 



Example of possible packet transmission (including zones) 

 

GigE Vision Multi-part - Payload (cont.) 



Various details about GigE Vision multi-part implementation: 

• Introduces dedicated payload type and packet format 

• Extended ID mode mandatory for multi-part payload type 

• Backward compatibility through capability/enable bits 

• Each part can be optionally split to multiple zones similar as with 

existing multi-zone payload (not all receivers might implement 

that, however) 

• All-in packet not possible for multi-part (at least one packet 

required for each part) 

 

GigE Vision Multi-part - Details 



Leader packet size (default 576B) is max limiting factor 

• 20B IP header, 8B UDP header, 20B GVSP header, 12 additional 

"general purpose" leader bytes  516B left for parts description 

• Single part description uses 48B  space for max 10 parts in the 

standard leader 

• Introduced new capability/configuration bit allowing to use larger 

(up to SCPSx) leader and trailer packets than the default max of 

576B 

• Controlling entity can only enable this on the transmitter if the 

receiver also has this capability 

• New status code to indicate that the current leader/trailer size is 

insufficient to carry the entire payload 

 

GigE Vision Multi-part - Number of Parts 



Chunk data can be appended to the multi-part payload same way as to 

any other payload: 

• Using an extended chunk mode introduced in GEV 2.0 

• Only a single set of chunk data common for all parts 

• Chunk data travel through the protocol as an additional part (this 

part does not need to be explicitly reported over GenTL) 

• Beware - the extended chunk mode fields in the trailer are 

appended after all the part description data (offset depends on 

number of parts) 

 

GigE Vision Multi-part - Chunk Data 



The streaming related book-keeping can be too high for some transmitter 

HW designs 

• Smaller end-of-part packets, payload gaps in cut-short linescan 

data  packet resend book-keeping might be non-trivial 

• It is therefore valid approach to "reserve" gaps between parts to 

avoid smaller last packet (will contain padding) 

• It is also valid to transfer all the "reserved" packets, even if the 

actual payload was cut short - such packets would carry only 

padding 

• The transmitter has to report actual data size in the trailer, the 

receiver has to ignore any padding beyond that 

• It is also valid to transfer the data top-down  implies no latency 

and buffering optimization, no zones 

 

GigE Vision Multi-part - Legacy Designs 



GenTL interface is transport layer agnostic 

• GigE Vision specific properties will be hidden and configured 

within the producer 

• Some of the GigE Vision specific options will disappear in the 

GenTL interface 

• In particular, the GenTL Consumer will never see the early per-

part data with low latency - in GenTL the buffer is always 

delivered when complete 

 

GigE Vision Multi-part - Use with GenTL 



Currently (2019) the discussions still in progress 

 

GigE Vision 

• Inclusion in version 2.2 close to ready? 

• Random access packet addressing (flows not strictly needed) 

• Preliminary and final descriptor sharing the same location 

 

USB3 Vision 

• Preliminary drafts 

• Bulk streams to handle flows? 

• Preliminary and final descriptor in leader/trailer 

GenDC on the Wire - Overview 



              

            

        

3D Model Reconstruction 

Hints on the acquired data processing 



Understanding and correctly implementing the SFNC model for 3D data 

exchange is key for interoperability 

• Many parameters needed that are not provided in the basic 

stream, additional info needed through SFNC 

• SFNC "Scan 3D Control" and related chapters 

• Same interpretation by all vendors very important 

• Compare and communicate with partners and competitors 

• Prefer clarification in public over custom interpretations to keep 

the model usage consistent 

 

SFNC Model For 3D 



When collecting parameters about the buffer contents, use the possible 

information sources in following order: 

1. Stream protocol (buffer infos for GenTL, protocol headers "on 

the wire") - most straightforward, always available, unlikely to 

fail 

2. Chunk data - better than nodemap features because it is bound 

to given buffer 

3. Nodemap - only last resort approach, the "current" device 

configuration might not match the buffer contents any more 

4. Have some reasonable defaults wherever applicable for devices 

not providing all the parameters 

 

Collecting the Parameters 



Following slides provide hints on possible 3D data processing approach, 

helping to understand the model (main points, no optimization): 

1. Identify Sources of Data 

2. Read Pixel Data 

3. Consider Pixel Validity 

4. Scale Raw Coordinates 

5. Linearize the Coordinates 

6. Convert Coordinate System 

7. Transform Coordinate System 

8. Units Conversion 

9. Build the 3D Model 

 

The algorithm is interesting also for device vendors to clarify how the 

parameters will be actually used 

3D Model Reconstruction Algorithm 



Some of the input data might be available from different sources 

• Look which data parts are present in the payload and their format 

• Compare this info with value of ChunkScan3dOutputMode 

• The depth coordinate C should be explicit in the payload 

• Coordinate A explicit in the payload or implicit from pixel 

position? 

• Coordinate B explicit in the payload, based on 

ChunkEncoderValue (linescan) or implicit from pixel position? 

• Pixel confidence explicit in the payload or encoded through 

"invalid values" (ChunkScan3dInvalidDataFlag/Value) within the 

coordinates or no confidence available (all pixels valid)? 

• Is color/luminance data present? 

• Are data with other (custom) pixel properties present? 

 

Step 1: Identify Sources of Data 



Loop through all pixels in the payload, reading the coordinate, confidence 

and other values for each pixel 

• Read the "transferred" data from locations identified in previous 

step 

• The raw coordinate values transferred by the device are abstract 

(A, B, C), no assumption about the coordinate system at this stage 

 

foreach : pixel 

read (transferred_a) 

read (transferred_b) 

read (transferred_c) 

 

(etc.: confidence, color, ...) 

 

 

Step 2: Read Pixel Data 



Skip pixels carrying invalid pixel flag (ChunkScan3dInvalidDataFlag/Value) 

 

If desired, consider pixel validity based on the known confidence value 

• Drop pixels under desired threshold if desired 

• The actual treatment of pixel confidence is application specific 

 

if (transferred_confidence < THRESHOLD) 

continue 

 

(just example) 

 

 

Step 3: Consider Pixel Validity 



Scale the raw transferred coordinate values 

• The scale/offset is reported for each coordinate in 

ChunkScan3dCoordinateScale, ChunkScan3dCoordinateOffset 

• If missing, assume scale=1, offset=0 

 

scaled_a = transferred_a * SCALE_A + OFFSET_A 

scaled_b = transferred_b * SCALE_B + OFFSET_B 

scaled_c = transferred_c * SCALE_C + OFFSET_C 

 

Step 4: Scale Raw Coordinates 



For non-disparity output modes no action needed (already linear) 

 

For disparity, the C coordinate is inversely proportional to the actual 

range 

• Read Scan3dBaseline and Scan3dFocalLength 

• Read Scan3dPrincipalPointU/V (default image center) 

• Read all with ChunkComponentSelector selecting Disparity 

 
linear_a = (scaled_a – PRINPT_U) * BASELINE / scaled_c 

linear_b = (scaled_b – PRINPT_V) * BASELINE / scaled_c 

linear_c = FOCAL_LEN * BASELINE / scaled_c 

 

Step 5: Linearize the Coordinates 



Convert the data to the target coordinate system (typically Cartesian) 

• Source device coordinate system identified by 

ChunkScan3dCoordinateSystem 

• If missing, assume right-hand Cartesian 

• From this point the abstract coordinates A, B, C become Cartesian 

X, Y, Z 

 

cartesian_x = (depends on source coord. system) 

cartesian_y = (depends on source coord. system) 

cartesian_z = (depends on source coord. system) 

 

Step 6: Convert Coordinate System 



Optionally perform automatic coordinate system transformation 

• If the data are in the "anchor" coordinate system of the device 
(ChunkScan3dCoordinateSystemReference==Anchor) 

• Parameters to transform from native anchor system to the reference 

one: ChunkScan3dCoordinateReferenceSelector/Value 
• Observe the reference point marker at the device 

• Useful eg. for intuitive live-view from the "sensor perspective", 
regardless the device type 

• Applied in following order: rotation along x, rotation along y, rotation 
along z, translation 

 
xrotated_x = cartesian_x 

yrotated_x = xrotated_x*cos(ROT_Y) + xrotated_z*sin(ROT_Y) 
zrotated_x = yrotated_x*cos(ROT_Z) - yrotated_y*sin(ROT_Z) 

transformed_x = zrotated_x + TRANS_X 

(similar for y and z coordinates) 
 

Step 7: Transform Coordinate System 



If needed, convert the data to the correct distance units 

• Distance units used by the device queried via 

ChunkScan3dDistanceUnit 

• If missing, assume millimeters 

• For disparity always meters implied by SFNC model 

 

output_x = transformed_x / UNIT_SCALE_FACTOR 

output_y = transformed_y / UNIT_SCALE_FACTOR 

output_z = transformed_z / UNIT_SCALE_FACTOR 

 

 

Step 8: Units Conversion 



In previous steps the 3D coordinates of all pixels were computed 

• Use them to build the 3D model in desired application specific 

format 

• Optionally attach color/luminance or other info (observe per-

component binning/decimation, disparity-based devices often 

output range and luminance data in different resolution) 

• ChunkScan3dAxisMin/Max can give hints about the bounding box 

of the 3D data 

 

 

Step 9: Build the 3D Model 



The shown algorithm is just an example that might not be fully applicable 

in all cases (some steps optional) 

 

Advanced topics such as multi-source devices not considered in the 

algorithm 

 

A real-world implementation would require various optimizations and 

fine algorithm control through user parameters 

 

 

Final Notes 



              

            

        

Information Sources 

How to stay in sync 



SVN-Trac-Forum-Wiki genicam.mvtec.com/trac/genicam 

• Trac forum with most of the 3D working group discussions 

genicam.mvtec.com/trac/genicam/discussion/topic/55 

• Trac ticket about 3D SFNC extensions (and other related tickets) 

genicam.mvtec.com/trac/genicam/ticket/1221 

• Lots of info that can help understand the final standards 

Official website www.genicam.org 

• Useful in particular to download all official releases and minutes 

from technical meetings 

Mailing list genicam@list.stemmer-imaging.com 

• Official place to ask for help 

• Many of technical discussions (even historical - archive) 

Groget  (www.groget.org, incl. GenICam introduction presentation) 

 

Where to Get Information 

http://www.genicam.org/
https://www.groget.org/publications/genicam_3d.pdf
https://www.groget.org/publications/genicam_introduction.pdf
https://www.groget.org/publications/genicam_introduction.pdf
https://www.groget.org/publications/genicam_introduction.pdf


Framework for implementation of GenTL Producers 

• Contains “Viky” – a toy GenTL Producer to demonstrate the 

framework usage and to allow direct experiments 

• Includes simple demonstration of 3D output with everything 

required to properly interpret it (e.g. the chunk data 

implementing the 3D model parameters) 

• Could provide useful hints even for developers not directly 

targeting GenTL 

• Available (full source code) to GenICam group members from the 

GenICam SVN repository 

GenTL Producer Framework 



Summary of versions of individual standard documents where 3D 

awareness was or will be introduced 

• PFNC 2.0 (part of GenICam 3.0) 

• SFNC 2.2 (part of GenICam 3.0) 

• GenTL 1.6 (GenDC & multi-part, part of GenICam 2019.11) 

• GenTL SFNC 1.1 

• GigE Vision 2.1 (multi-part), 2.2 (GenDC, not yet ratified) 

• GenDC 1.0 (part of GenICam 2019.11) 

• CoaXPress? 

• CameraLink HS? 

• USB3 Vision? 

3D Aware Standard Versions 



GenICam group membership 

• Is free (for companies/organizations) 

• Provides access to the group's resources and knowledge base 

 

How to join: 

• On www.genicam.org navigate to page named "GenICam Group 

Members" (the actual link might change) 

• The page contains section "How to become an associated 

member?" with corresponding instructions 

GenICam Group Membership 



              

            

        

              

        

? 
What else?  
Further discussion... 
 

Time to start with actual implementation? 



 
What’s Your Message? 

 

                                                            3D 


